Semi-supervised Bayesian Deep Multi-modal Emotion Recognition

نویسندگان

  • Changde Du
  • Changying Du
  • Jinpeng Li
  • Wei-long Zheng
  • Bao-liang Lu
  • Huiguang He
چکیده

In emotion recognition, it is difficult to recognize human’s emotional states using just a single modality. Besides, the annotation of physiological emotional data is particularly expensive. These two aspects make the building of effective emotion recognition model challenging. In this paper, we first build a multi-view deep generative model to simulate the generative process of multi-modality emotional data. By imposing a mixture of Gaussians assumption on the posterior approximation of the latent variables, our model can learn the shared deep representation from multiple modalities. To solve the labeled-data-scarcity problem, we further extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. Our semi-supervised multi-view deep generative framework can leverage both labeled and unlabeled data from multiple modalities, where the weight factor for each modality can be learned automatically. Compared with previous emotion recognition methods, our method is more robust and flexible. The experiments conducted on two real multi-modal emotion datasets have demonstrated the superiority of our framework over a number of competitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network

This paper describes the details of Sighthound’s fully automated age, gender and emotion recognition system. The backbone of our system consists of several deep convolutional neural networks that are not only computationally inexpensive, but also provide state-of-theart results on several competitive benchmarks. To power our novel deep networks, we collected large labeled datasets through a sem...

متن کامل

Semi-Supervised Single- and Multi-Domain Regression with Multi-Domain Training

We address the problems of multi-domain and single-domain regression based on distinct and unpaired labeled training sets for each of the domains and a large unlabeled training set from all domains. We formulate these problems as a Bayesian estimation with partial knowledge of statistical relations. We propose a worst-case design strategy and study the resulting estimators. Our analysis explici...

متن کامل

Deep Matching Autoencoders

Increasingly many real world tasks involve data in multiple modalities or views. This has motivated the development of many effective algorithms for learning a common latent space to relate multiple domains. However, most existing cross-view learning algorithms assume access to paired data for training. Their applicability is thus limited as the paired data assumption is often violated in pract...

متن کامل

Spatiotemporal Networks for Video Emotion Recognition

Our article presents an audio-visual based multi-modal emotion classification system. Considering the fact of deep learning approaches to facial analysis have recently demonstrated high performance, in our work, we use convolutional neural networks (CNNs) for emotion recognition in video, relying on temporal averaging and pooling operations reminiscent of widely used approaches for the spatial ...

متن کامل

Confidence Measures in Speech Emotion Recognition Based on Semi-supervised Learning

Even though the accuracy of predictions made by speech emotion recognition (SER) systems is increasing in precision, little is known about the confidence of the predictions. To shed some light on this, we propose a confidence measure for SER systems based on semi-supervised learning. During the semi-supervised learning procedure, five frequently used databases with manually created confidence l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.07548  شماره 

صفحات  -

تاریخ انتشار 2017